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Abstract We consider the problem of variable selection in linear regression using
mixtures of g-priors. A number of mixtures have been proposed in the literature
which work well, especially when the number of regressors p is fixed. In this paper,
we propose a mixture of g-priors suitable for the case when p grows with the sample
size n, more specifically when p = O(nb), 0 < b < 1. The marginal density based
on the proposed mixture has a nice approximation with a closed form expression,
which makes application of the method as tractable as an information criterion-based
method. The proposed method satisfies fundamental properties like model selection
consistency when the true model lies in the model space, and also consistency in an
appropriate sense, under misspecified models setup. The method is quite robust in the
sense that the above properties are not confined to normal linear models; they continue
to hold under reasonable conditions for a general class of error distributions. Finally,
we compare the performance of the proposed prior theoretically with that of some
other mixtures of g-priors. We also compare it with several other Bayesian methods of
model selection using simulated data sets. Theoretically, as well as in simulations, it
emerges that unlike most of the other methods of model selection, the proposed prior
is competent enough while selecting the true model irrespective of its dimension.
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1 Introduction

We consider the regression setup with response variable y and a set of p potential
regressors x1, x2, . . . , x p. Let yn = (y1, y2, . . . , yn) be a set of n observations on y,
and Xn = (

x1, x2, . . . , xp
)
be the n × p design matrix, where xi is the vector of n

observations on the i th regressor xi for i = 1, 2, . . . , p. We write

yn = μn + en, (1)

where μn = E(yn|Xn) is the regression of yn on Xn and en is the vector of random
errors. If we assume the normal linear regression model, then μn = β01 + Xnβ and
en ∼ Nn(0, σ 2 I ). Here β0 is the intercept, 1 and 0 are the n × 1 vectors of ones and
zeros, respectively, and β = (

β1, β2, . . . , βp
)′ is the vector of regression coefficients.

In this article, we study the problem of variable selection. Given a set of p available
regressor variables, there are 2p possible linear regression models. The space of all
these models is denoted byM and indexed by γ , where each γ consists of a subset of
size p(γ ) (0 ≤ p(γ ) ≤ p) of the set {1, 2, . . . p}, indicating the regressors selected
in the model. If the model Mγ corresponding to some γ ∈ M is assumed to be true
then μn = β01 + Xγ βγ and Mγ can be expressed as

Mγ :yn = β01 + Xγ βγ + en, (2)

where Xγ is a sub-matrix of Xn consisting of the p(γ ) columns specified by γ , and
βγ is the corresponding vector of regression coefficients. We assume that all the
components of βγ are non-zero. This ensures that there is at most one true model in
M.

In a Bayesian approach, each model Mγ is associated with a prior probability
P(Mγ ) and the corresponding set of parameters θγ = (

β0,βγ , σ 2
)′
involved in the

model is also associated with a prior distribution π(θγ |Mγ ). Given the priors, one
computes the posterior probability of Mγ as

P(Mγ |yn) = P(Mγ )mγ (yn)
∑

γ∈M P(Mγ )mγ (yn)
, (3)

where

mγ (yn) =
∫

f (yn|θγ , Mγ )π(θγ |Mγ )dθγ (4)

is the marginal density of yn and f (yn|θγ , Mγ ) is the density of yn given θγ under
Mγ . In our search for a model, f (yn|θγ , Mγ ) will be taken as normal. We consider
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the model selection procedure that selects the model in M with the highest posterior
probability.

A prevalent conventional prior onβγ is the g-prior due to Zellner (1986). Properties
of the method based on g-prior are studied extensively in the literature (see, e.g., Liang
et al. 2008; Fernández et al. 2001). This method crucially depends on the choice of the
hyperparameter g (see, e.g., Berger and Pericchi 2001; Liang et al. 2008). Moreover,
this method is subject to inconsistencies like Bartlett paradox (see Bartlett 1957;
Jeffreys 1961) and information paradox (see Zellner 1986; Berger and Pericchi 2001).
Liang et al. (2008) considered a prior on g instead of considering a fixed g to remove
these inconsistencies. Subsequently, a number of mixtures of g-priors are proposed in
the literature.

We work in the mixture of g-priors setup as considered in Liang et al. (2008). The
complete prior specification is given by

π(β0, σ
2|Mγ ) = 1

σ 2 , βγ |β0, σ
2, g, Mγ ∼ Np(γ )(0, gσ 2(X′

γXγ )−1), g ∼ π(g).

(5)

Here, without loss of generality, we assume that the columns of Xγ are centered so
that 1′xi = 0 for all i . We do not consider any specific prior probability on the model
space, rather impose some conditions on model prior probabilities, P(Mγ ), under
which our results hold.

Among the proposed mixtures of g-priors, the earliest one, to the best of our knowl-
edge, is due to Zellner and Siow (1980), who recommended using Cauchy prior on βγ .
As the Cauchy distribution is an inverse gamma scale mixture of normal distributions,
their prior proposition is considered as a mixture of g-priors. Other mixtures include
the hyper-g and the hyper-g/n priors proposed by Liang et al. (2008), the generalized-
g prior ofMaruyama andGeorge (2011) and the robust prior proposed by Bayarri et al.
(2012). Henceforth, we will refer to these priors as the Zellner–Siow prior, the hyper-g
or g/n prior, the generalized-g prior and the robust prior, respectively.

Bayarri et al. (2012) described some desirable properties a prior should satisfy in
the context of model selection which are satisfied by the robust prior. Ley and Steel
(2012) made an extensive simulation study to compare several priors. However, none
of them considered the case where p increases with n. Maruyama and George (2011)
proposed a prior which is applicable when p > n, but proved consistency of their
method for the case when p is fixed. Shang and Clayton (2011) proved consistency
for mixtures of g-priors for growing p, but their setup differs from the usual g-prior
setup with respect to the covariance structure of the prior distribution of βγ . Wang and
Sun (2014) and Xiang et al. (2016) investigated properties of different mixtures for
the case with growing number of regressors. However, they only established results
for Bayes factor consistency for pairwise comparison of models. Recently, Moreno
et al. (2015) have studied properties of the g-prior with g = n and the Zellner–Siow
prior when p grows with n.

The motivation of this work is to develop a consistent and robust model selection
method suitable for ‘large p large n’ regime. We propose a prior π(g) on g, suitable
for the case where p increases with n at a rate p = O(nb), 0 < b < 1 and p < n (see,
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e.g., Sparks et al. 2015; Johnson and Rossell 2012; Wang and Sun 2014; Moreno et al.
2015 for related work in this setup). The proposed mixture belongs to the family of
the Zellner–Siow prior. In a sense, we consider a modified form of the Zellner–Siow
prior by choosing an appropriate scale parameter. An advantage of this prior is that it
provides an approximation to the marginal density mγ (yn) in (4) with a closed-form
expression which facilitates easy implementation and theoretical studies. Further, it
satisfies many attractive consistency properties when p increases with n.

In our study, the following two situations are considered separately. First, we con-
sider the setup where the true model belongs to the model space M, i.e., the true
regression μn is as in (2) for some γ . A well-known notion of consistency in this
regard is model selection consistency which requires that the posterior probability of
the true model goes to one as n → ∞. The proposed mixture is shown to be model
selection consistent irrespective of the dimension of the true model. We also show that
most of the other available mixtures fail to be model selection consistent for similar
rate of increase in p under sparse situations. We next consider the case where the
models are misspecified. Here, μn can be any unknown vector, not necessarily in the
span of {1, x1, . . . , xp}. Consistency in this case refers to the property of a model
selection procedure to choose that model in M which is closest to the unknown true
model in some asymptotic sense. We investigate consistency of the proposed prior
under the misspecified models setup, using an appropriate notion of consistency (see,
e.g., Chakrabarti and Ghosh 2006; Chakrabarti and Samanta 2008; Lv and Liu 2014;
Mukhopadhyay et al. 2015 for related work).

Presence of the information paradox inZellner’s g-prior is one of themotivations for
considering mixture of g-priors. We, therefore, verify whether the proposed mixture
can resolve the information paradox, i.e., is information consistent in the sense of
Bayarri et al. (2012).

Finally, we compare the performance of our proposed mixture with several other
well-known Bayesian methods under the setup where p grows with n and p < n. Our
simulation results show that unlike most of the other methods which perform well for
specific ranges of the dimension of the true model, the proposed method is able to
select the true model irrespective of its dimension.

In Sect. 2, we define the proposed prior and discuss the motivation for considering
the same. The approximation of the marginal density to a closed form expression and
its rate of accuracy are also discussed here. Sections 3 and 4 of the paper deal with
model selection consistency. In Sect. 3, we consider the case with normal errors. The
performance of the proposed mixture is studied in Sect. 3.1, while that of several other
mixtures is studied in Sect. 3.2. In Sect. 4 we relax the assumption of normality of
en and prove model selection consistency for a general class of error distributions.
Section 5 deals with the case of misspecified models. We find sufficient conditions
under which the proposed prior is consistent in an appropriate sense for the gen-
eral class of error distributions. In Sect. 6, information consistency is considered. In
Sect. 7, we present our simulation studies. Section 8 contains concluding remarks.
Proofs of some important results are presented in the ‘Appendix’, and those of the
other results and a part of our simulation studies are presented in the supplementary
file.
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2 The proposed mixture of g-priors

We first motivate our proposal for a mixture on g. Most of the priors on g in the
literature are extremely right-skewed having a unique modal point close to zero and a
very flat decay. For example, the hyper-g and g/n priors are positive-tailed J -shaped
with modal point at zero. The robust prior of Bayarri et al. (2012) is a truncated one
which moves the support away from zero and still is extremely right-skewed having
the modal point as the point of truncation.

On the other hand, if we consider popular recommendations of g in Zellner’s g-
prior, choices include the unit information prior (g = n, Kass and Raftery 1995),
the choice of g related to the risk inflation criterion (g = p2, see Foster and George
1994; George and Foster 2000), and the benchmark prior (g = max{n, p2}, Fernández
et al. 2001). Recently, Mukhopadhyay et al. (2015) presented some theoretical results
to explain why a relatively larger value of g yields better results, especially when
p grows with n and recommended using g = n2 for practical purposes. From such
recommendations, it seems reasonable to put relatively higher probability masses to
higher values of g for a mixture. Thus, there persists a gap in the domain of g getting
relatively higher mass when a fixed g is considered compared to that of a mixture.
Here, we propose a class of mixtures which gives more probability mass to a range of
relatively higher values of g compared to the existingmixtures.We consider the scaled
inverse chi-square prior π(g) on g with scale parameter τ 2 and degrees of freedom ν,
which is same as Inv-Gamma (ν/2, τ 2ν/2) prior on g, given by

π(g) =
(
τ 2ν/2

)ν/2

Γ (ν/2)

exp
[−τ 2ν/(2g)

]

g1+ν/2 , g > 0, ν > 0, τ 2 > 0. (6)

We choose the hyperparameter τ = nr , 1 ≤ r < 2.Note that such a choice of τ ensures
that the prior has a unique mode at n2rν/(ν + 2) and a very flat decay. Although the
hyperparameter ν can take any positive value, we recommend using values between
1 and p. In this paper, we will consider two extreme choices of ν, namely ν = 1 and
ν = p. We further discuss on the choices of the hyperparameters in Sect. 8.

Inverse gamma mixtures of g-prior has been previously used by Zellner and Siow
(1980). In the context of linear regression models with shrinkage priors, Park and
Casella (2008) and Hans (2009) used inverse gamma priors for similar normal scale
mixtures for βγ , while using the Bayesian version of lasso. The mixture we propose
results in a prior forβγ with thick tails, which is also recommended by Jeffreys (1961).

An advantage of considering the proposed mixture of g-priors is the availability of
an approximation of the marginal density to a closed form expression, which makes
the method theoretically tractable and application much simpler. In the following
subsection, we give an explicit form of the approximation and also discuss its accuracy.

2.1 An approximation to the marginal density

For the linear model setup, the vector of parameters in the model Mγ is given by
θγ = (

β0,βγ , σ 2, g
)
. The marginal density mγ (yn) in (4) is
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mγ (yn) =
∫

f (yn|β0,βγ , σ 2, Mγ )π(βγ |β0, σ
2, g, Mγ )π(β0, σ

2)

×π(g)d(β0,βγ , σ 2, g),

where f (yn|β0,βγ , σ 2, Mγ ) is the p.d.f. of the n-variate normal distribution with
mean β01+Xγ βγ , dispersion matrix σ 2 I and π(βγ |β0, σ

2, g, Mγ ), π(β0, σ
2), π(g)

are as in Eqs. (5) and (6).
Integrating the integrand above with respect to β0, βγ and σ 2, we obtain a closed

form expression which leads to

mγ (yn) = Γ (n − 1)/2

π(n−1)/2
√

n

(
S2

y

)−(n−1)/2
∫ ∞

0

(1 + g)(n−1−p(γ ))/2

[
1 + g(1 − R2

γ )
](n−1)/2

π(g)dg, (7)

where S2
y = ‖yn − ȳn1‖2/n, (1 − R2

γ ) = y′
n(I − Pn(γ ))yn/(nS2

y ), Pn(γ ) =
Znγ (Z ′

nγ Znγ )−1Z ′
nγ , and Znγ = (1 Xγ ).

Note that the marginal density of the intercept only model Mγ = MN : yn = β01+
en , which will be referred to as the null model, does not involve the hyperparameter
g. It can be obtained as a special case of the marginal in expression (7) by putting
R2

γ = 0 and p(γ ) = 0.
For models γ ∈ M\{N }, the marginal density given by the proposed prior (6) does

not have a closed form. However, we obtain an approximation of the marginal density
with a closed form expression when the proposed mixture (6) is used in (7). When p
is fixed, this approximation can achieve an accuracy of order n−(2r−1), 1 ≤ r < 2
with probability tending to 1, which is at least as good as the accuracy of the Laplace
approximation (see Kass and Raftery 1995). When p increases with n, the Laplace
approximation may not be valid for the integral in (7) for commonly used priors on
g, since the integrand may not be Laplace regular (see Kass et al. 1990). When
p = O(nb), 0 < b < 1 and ν = 1 (or, when ν is free of n), the approximation is
accurate with an error of the order n−(2r−b−1). When ν = p (or, ν is of the same order
of n as p), the approximation still attains an accuracy of the order n−(2r−1).

We first state the assumptions under which the approximation holds.
Throughout this paper, yn is modeled as (1) and we assume the following:

(A1) μn
′μn = O(n) as n → ∞.

Assumption (A1) holds if theμi ’s are of comparablemagnitude and they do not
grow too fast compared to n. We next consider a general class of distributions
of errors satisfying the following assumption:

(A2) The errors e1, e2, . . . , en are i.i.d. with a common density having mean 0 and
finite fourth-order moment.

Assumption (A2) is satisfied by a wide variety of error-distributions including the
normal, Laplace, logistic, generalized normal distributions, t(k) with k > 4 and all
distributions with bounded supports.

We now state the result:
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Theorem 1 Consider the set of priors (5) and (6) with ν varying from 1 to p. Under
assumptions (A1) and (A2), the marginal density in (7) satisfies the following:

mγ (yn) ≤ m̃γ (yn)
(
1 + p

νn2r−1 O(1)
)

and mγ (yn) ≥ m̃γ (yn)
(
1 + p

νn2r−1 Op(1)
)

,

uniformly in γ , for any γ ∈ M\{N } as n → ∞, where

m̃γ (yn) = Γ ((n − 1)/2)Γ ((ν + p(γ ))/2)√
nΓ (ν/2)

×
(
πS2

y

(
1 − R2

γ

))−(n−1)/2
(

n2rν

2

)−p(γ )/2

.

From Theorem 1, we obtain an approximation to the marginal density

mγ (yn) ≈ m̃γ (yn), as n → ∞,

in the sense that the ratio of mγ (yn) and m̃γ (yn) converges to 1 in probability. This
approximation holds uniformly in γ since the O(1) and Op(1) terms can be made
free of γ . Further, this approximation holds for a large class of error distributions
satisfying (A2). From Theorem 1 it follows that if ν = ns for some 0 ≤ s ≤ b, then
the approximation is accurate upto an order n−(2r+s−b−1).

3 Model selection consistency under normality

In this section, we assume that the true mean μn can be expressed as a linear combi-
nation of a subset of the p regressors and en ∼ N (0, σ 2 I ). Let Mγc , with γc ∈ M be
the true model. An ideal model selection procedure is likely to identify the true model
with high probability in this framework. This property is termed as model selection
consistency and is achieved if posterior probability of Mγc , given by (3), converges to
one in probability, i.e.,

P(Mγc |yn)
p−→ 1 as n → ∞. (8)

In Sect. 3.1, we provide sufficient conditions under which (8) holds when the
proposed prior is used. In Sect. 3.2, we theoretically investigate model selection con-
sistency of some other mixtures of g-priors in a sparse situation.

3.1 Consistency of the proposed mixture

We split the whole space of 2p models ofM into three mutually exclusive and exhaus-
tive parts as follows:

M1 = {γ ∈ M : Mγ ⊃ Mγc , γ 
= γc}, M2 = {γ ∈ M : γ /∈ M1, γ 
= γc} and
{γc}. We assume that
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(A3) lim infn→∞ ns min
γ∈M2

μn
′(I − Pn(γ ))μn/n > δ for some constants s ∈ [0, 1)

and δ > 0.
We impose a general restriction on model prior probability as follows:

(A4) For all γ, γ ′ ∈ M and some constant c > 1,

P(Mγ )/P(Mγ ′) ≤ c|p(γ )−p(γ ′)|.

A remark on each of these assumptions is made after the following theorem:

Theorem 2 Let yn be as in (1) with μn satisfying (A1) and en ∼ Nn
(
0, σ 2 I

)
. If

p = O(nb), then the prior specification given by (5) and (6) is model selection
consistent for 0 < b < 2r/5 when ν = 1, and for 0 < b < r/2 when ν = p, provided
(A3) holds with s < (1 − b)/2 and (A4) holds.

Remark 1 This result is different from those obtained by Wang and Sun (2014) and
Xiang et al. (2016), who have shown Bayes factor consistency for growing number of
regressors. Our result deals with model selection consistency considering all the 2p

models in the model space, and it is a much stronger result than pairwise consistency.

Remark 2 Assumption (A3) with s = 0 has been considered previously by many
authors (see, e.g., Fernández et al. 2001; Liang et al. 2008; Bayarri et al. 2012). It
is the key assumption for model selection consistency which ensures that the models
can be differentiated. Here, we relax this assumption by allowing s > 0, which is a
natural extension for the situation when p grows with n.

Remark 3 Assumption (A4) indicates that the true model may not have a prior prob-
ability arbitrarily close to zero, which is necessary to achieve consistency.

This assumption is quite general and includes many popular classes of model prior
probabilities such as the uniform prior probability (i.e., P(Mγ ) = 1/2p) and the
Bernoulli prior probability (i.e., P(Mγ ) = q p(γ )(1 − q)(p−p(γ )), with 0 < q < 1).
In the hierarchical beta Bernoulli setup (see Ley and Steel 2009), the parameter q
of the Bernoulli prior is assigned a beta hyperprior. Assumption (A4) also holds for
the hierarchical beta Bernoulli prior if both the parameters of the beta hyperprior are
proportional to p.

Theorem 2 can also be proved if we replace (A4) by the following weaker assump-
tion:

(A5) For all γ, γ ′ ∈ M, and some constants c1, c2 > 1, b0 > 0

P(Mγ )/P(Mγ ′) ≤ (c1nb0) ∨ c
|p(γ )−p(γ ′)|
2 ,

where a ∨ b = max{a, b}.
To prove Theorem 2, we require b0 < r − 5b/2 when ν = 1 and b0 < r − 2b when
ν = p. However, for simplicity in presentation we work with (A4).
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3.2 Some other mixtures of g-priors

The use of beta prime (beta of second kind) distribution in a mixture of g-priors
is a common practice (see Liang et al. 2008; Maruyama and George 2011; Bayarri
et al. 2012). One of the reasons for recommending this mixture is the possibility of
obtaining marginal densities that are of closed form (see, e.g., Bayarri et al. 2012,
Sect. 3.3). Therefore, we study the performance of this prior and identify the ranges
of hyperparameters which lead to inconsistency when p grows with n. Let g follow a
beta prime distribution with parameters λ0 and λ1; then

π(g) = Γ (λ0 + λ1)

Γ (λ0)Γ (λ1)
gλ0−1(1 + g)−(λ0+λ1), g > 0, λ0 > 0, λ1 > 0. (9)

The following theorem states that when p = nb, 0 < b < 1, then for some inappro-
priate specifications of the hyperparameters λ0 and λ1, the model selection rule given
by the set of priors (5) and (9) becomes inconsistent under the null model, MN .

Theorem 3 Let yn = β01 + en where en ∼ Nn
(
0, σ 2 I

)
, and assumption (A4) hold.

If the number of regressors p = nb, 0 < b < 1, then the set of priors given by (5) and
(9) with λ1 > ε, for some ε > 0 free of n, is inconsistent provided (λ0/λ1) = O(n2b).

Remark 4 For the hyper-g prior, π(g) is as in (9) with λ0 = 1 and λ1 = (a/2− 1) for
some a > 2 free of n. Hence, it follows from the above theorem that the hyper-g prior
is inconsistent for any b > 0. It is shown in Liang et al. (2008) that the hyper-g prior
is not consistent under the null model even for fixed p. To remove this inconsistency
the authors have considered the hyper-g/n prior by changing the scale of the hyper-g
prior to n. The hyper-g/n prior is consistent when p is fixed, but fails to be consistent
if p = nb, for any b > 0. The proof is in the supplementary file.

Remark 5 For the generalized g-prior of Maruyama and George (2011) π(g) is as
in (9) with λ0 = A + 1 and λ1 = B + 1 where the authors recommend using
A = (n − p(γ ) − 1)/2 − B and some fixed B ∈ (−1,−1/2) for the case when
p+1 < n. Hence, it follows fromTheorem3 that the generalized-g prior is inconsistent
for this recommended setting if b ≥ 1/2.

Remark 6 The robust prior of Bayarri et al. (2012) can also be expressed as a truncated
scaled beta prime distribution as (g+ B)/(ργ (n+ B))−1 ∼ beta prime(1, A)where
A > 0, B > 0, ργ > B/(B + n). The recommended choices of hyperparameters are
A = 1/2, B = 1 and ργ = 1/(1 + p(γ )). It has also been suggested that ργ should
be free of n. This makes choice of the parameter ργ difficult when p = nb, since in
that case the recommended choice of ργ involves n. We check with two choices of
ργ , a constant ργ free of n (say, ργ = ρ, for all γ ∈ M) and ργ = 1/(1 + p(γ )).
It has been shown in the supplementary file that when p = nb, a necessary condition
for consistency of the robust prior under the null model is b < 1/2, for both choices
of ργ .

Remark 7 It has been shown in Moreno et al. (2015) that Zellner–Siow prior is incon-
sistent for b ≥ 1/2 when Bernoulli prior is used on the model space. The increment of
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scale from the order of n to n2r makes the prior suitable for ‘large p large n’ regime.
For r > 1, clearly the prior is consistent for some b > 1/2 which is not the case with
the other priors.

However, similar improvement is not expected from all the priors we mentioned
above. For example, if we change the scale of the hyper-g/n prior from n to nr for
any r > 1, it still remains inconsistent when the null model is true, and p = nb, for
any 0 < b < 1. The proof is similar in idea to the proof of the result stated in Remark
4.

4 Model selection consistency for general error distributions

In this section, we extend our results to situations where the distribution of regression
errors belongs to a larger class satisfying assumption (A2). We investigate the strength
of our model selection procedure when the distribution of the errors is not necessarily
normal and the same model selection rule (based on the normal likelihood) is used. In
a sense, we study robustness of our model selection rule for non-normal errors.

Unlike the case for normal errors, here we do not consider all the 2p models. We
make an additional assumption that the number of models of each dimension in the
model space is bounded by a fixed number. Thus we assume the following:

(A6) If p∗(d) denotes the number of models in the model space which are of
dimension d (d = 1, 2, . . . , p + 1), then

max
1≤d≤p+1

p∗(d) ≤ m

for some fixed positive integer m (free of n).
Condition (A6) holds, for example, when a class of nested models is considered.

The class of all nested models can be expressed as

M∗ = {{φ}, {1}, {1, 2}, . . . , {1, 2, . . . , p}} , with M∗ ⊂ M.

Note thatM∗ has p+1 differentmodels and (A6) holdswithm = 1.When p increases
with n, the number of models in M∗ also increases. While the cardinality of M is
exponential in p (i.e., 2p), forM∗ it is linear in p.

The situation with a model space like M∗ may occur, for example, when we have
information on relative importance of the regressors, and the regressors can be ordered
accordingly.Model selection in nestedmodels has beenwidely studied in the Bayesian
paradigmwhen the error distribution is normal (see, e.g.,Moreno1997;Cui andGeorge
2008;Wang and Sun 2014). Unlike these authors, who study Bayes factor consistency,
we consider model selection consistency restricted to the space of models satisfying
(A6) when p is increasing.

Condition (A6) also holds for other classes of nested and non-nested models. For
example, it holds if the p regressors are divided into small groups (of bounded size)
which can be arranged in deceasing order of importance and there are no preferences
for regressors within each group.

We summarize our findings in the following theorem:
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Theorem 4 Let yn be as in (1)with μn satisfying (A1), and en satisfying (A2). Assume
conditions (A4) and (A6). If p = O(nb), then the prior specification given by (5) and
(6) with τ = nr is model selection consistent for any 0 < b < 1 provided (A3) holds
with s < (1 − b)/2.

Remark 8 Theorem 4 can be proved if we replace assumption (A4) by assumption
(A5) stated in Remark 3 with b0 < r − b/2 for ν = 1, and with b0 < r for ν = p.

5 Consistency in the case of misspecified models for general error
distributions

In Sects. 3 and 4, we have considered situations when the true mean μn in (1) belongs
to the span of {1, x1, . . . , xn}. We will now consider a more general scenario where
μn is any n-dimensional vector, i.e., the true model does not necessarily belong to
the model space M. Several authors have studied related problems of linear model
selection under this framework (see, e.g., Li 1987; Shao 1997; Chakrabarti and Ghosh
2006; Chakrabarti and Samanta 2008; Mukhopadhyay et al. 2015). The usual notion
of model selection consistency cannot be used in this scenario. To validate a model
selection rule we, therefore, adopt an alternative notion of consistency suited for this
case as done in Mukhopadhyay et al. (2015).

Here, consistency of a model selection procedure refers to the property of choosing
the model which is closest to the unknown true model among all candidate models in
M (in an asymptotic sense). Let the true density of yn be f .We consider theKullback–
Leibler divergence as the measure of distance between two probability distributions.
We define the distance Δn(γ ) between the true distribution f of yn , and the model
Mγ as the minimum Kullback–Leibler distance between f and the density under Mγ ,
minimized with respect to the parameters (β0,βγ ). An ideal model selection criterion
should choose a model Mγ ∗ which is as close as possible to the true distribution, i.e.,
for which Δn(γ ∗) = minγ∈M Δn(γ ).

It can be easily verified that the Kullback–Leibler distance between the true distri-
bution, given by the density function f , and the distribution of N (1β0 +Xγ βγ , σ 2 I )
under Mγ equals

∫
f (yn) log f (yn)dyn + n

2
(1 + log σ 2)

+ 1

σ 2 (μn − 1β0 − Xγ βγ )′(μn − 1β0 − Xγ βγ ).

The distance Δn(γ ) between the true model f and the model Mγ , obtained by
minimizing the above with respect to (β0,βγ ), is given by

Δn(γ ) =
∫

f (yn) log f (yn) dyn + n

2

(
1 + log σ 2

)
+ Dn(γ ), (10)

where

Dn(γ ) = 1

2σ 2μn
′ (I − Pn(γ ))μn . (11)
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Note that the first two terms of Δn(γ ) in (10) do not involve γ and, therefore,
argminγ Δn(γ ) = argminγ Dn(γ ). Thus, we refer a model selection procedure to
be consistent if it satisfies

Dn(γ̂ )

minγ∈M Dn(γ )

p−→ 1 as n → ∞, (12)

where Mγ̂ is the model chosen by the model selection rule.
While proving consistency of the model selection procedure based on the proposed

prior in the above sense, we consider the general class of error distributions satisfying
assumption (A2) and the whole set of 2p models M for comparison. We make the
following assumption, which is analogous to assumption (A3), by replacing M2 in
(A3) by M as

(A3*) lim infn→∞ ns minγ∈M μn
′(I − Pn(γ ))μn/n > δ for some constants s ∈

[0, 1) and δ > 0.

Note that in this case M2 = M.
The result on consistency under misspecified models setup is stated as follows:

Theorem 5 Let yn be as in (1) with μn being any real vector in R
n satisfying (A1)

and en satisfying (A2). Suppose the assumption (A4) holds and (A3*) holds with
s < (1 − b)/2. If the number of regressors p = O(nb), 0 < b < 1, then the set of
priors (5) and (6) is consistent in the sense that (12) holds for any 0 < b < 1.

In Theorem 5, it is only assumed that yn is the sum of two components, namely the
regression mean μn and a random error en . Here, μn is allowed to be arbitrary and
en can follow any distribution satisfying assumption (A2). Thus, given the additive
structure of yn as stated in (1), consistency is obtained in a much general setting.

Remark 9 Theorem 5 can be proved if assumption (A4) on model prior probabilities
is replaced by the following much weaker assumption:

P(Mγ )/P(Mγ ′) ≤ ent ∨ c|p(γ )−p(γ ′)|

for all γ, γ ′ ∈ M, some t < (1 − s) and c > 1.

6 Information consistency

The criterion of information consistency has been addressed by several authors includ-
ing Jeffreys (1961), Berger and Pericchi (2001), Bayarri and García-Donato (2008),
Liang et al. (2008) and Bayarri et al. (2012). While comparing the null model with any
model Mγ , suppose that ‖β̂γ ‖2 → ∞ holds (or equivalently, the usual F statistic goes

to ∞) with both n and p(γ ) fixed, β̂γ being the least squares estimator of βγ . This is
considered as a very strong evidence supporting the model Mγ , and it is expected that
the Bayes factor of the model Mγ relative to the null model would go to ∞. The prop-
erty that the Bayes factor goes to ∞ whenever ‖β̂γ ‖2 → ∞ with fixed n and p(γ ), is
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termed as information consistency in Bayarri et al. (2012). However, this does not hold
for Zellner’s g-prior. For mixtures of g-priors, Liang et al. (2008, Theorem 2) give a
sufficient condition which ensures information consistency. The following result gives
conditions under which the mixture proposed in (6) is information consistent:

Result 1 Consider the set of priors (5). The mixture of g-priors given by (6) is infor-
mation consistent if n ≥ p + 1 when ν = 1 and if n ≥ 2p when ν = p.

Note that for ν = 1 the proposed prior is information consistent with minimal
sample size, i.e., information consistency holds for any n > p (also see Liang et al.
2008 in this context).

7 Performance of the proposed prior on simulated datasets

In this section, we validate the performance of the proposed set of priors (5) and
(6) using some simulated datasets. We present simulation results for model selection
consistency under different simulation schemes.

Choices of hyperparameters There are two hyperparameters involved in the proposed
mixture (6), namely τ = nr and ν. For practical purposes we take r = 1. Arguments
supporting this choice of r are provided in the next section. In each case, we consider
our proposed prior with two choices of ν, viz., ν = 1 (proposed I) and ν = p
(proposed II). From our results with these choices of ν, one should get some idea
about the performance of an intermediate choice of ν.

Other methods We compare the proposed method of model selection with a wide vari-
ety of Bayesian methods, which includes four other mixtures of g-priors, namely the
Zellner–Siow prior, the hyper-g/n prior, the generalized-g prior and the robust prior
with recommended choices of hyperparameters. Among other methods, we consider
the Bayesian shrinking and defusing prior (BASAD) of Narisetty and He (2014). Since
our simulation setup is not restricted to sparse cases, we consider a less sparse specifi-
cation of the parameter K , K = 25, which is used as an initial choice for the dimension
of the true model in Narisetty and He (2014). We also consider the non-local prior
(piMOM) of Johnson and Rossell (2012) and the methods based on Bayesian credible
region (BCR.joint and BCR.marg) due to Bondell and Reich (2012) for comparison.

Simulation setup Our studies address the case when p increases with n and, therefore,
we consider moderately large p compared to n. Three choices of n (n = 50, 100, 150)
and two choices of p (p + 1 = 30, 50) for each value of n have been considered.
Note that for any such choices of n and p, p can be regarded as of order nb for some
0 < b < 1. For each combination of (n, p), we generate n values of each of the
p regressors x1, x2, . . . , x p and this gives the full design matrix Xn . We choose p
numbers ξi , for i = 1, . . . , p and for each i generate the n values of the i th regressor
xi from an N (ξi , 1) distribution. We assume that the n values of the i th regressor are
coming from a homogeneous population. In order to fix a true model, we choose its
dimension p(γc). We then choose the p(γc) non-zero regression coefficients βi ’s, the
intercept β0 in the true model and also a value for the error variance σ 2. The p(γc)
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columns of the design matrix Xγc for the true model are chosen at random from the p
columns of Xn .

Here, (ξ1, . . . , ξp) is chosen as a random permutation of (0.2, 0.4, . . . , 0.2 × p).
We choose three different values of p(γc); first a sparse model where p(γc) is small
(p(γc) = 5, Scheme 1), second a truemodel with half of the regressors active (p(γc) =
[p/2], Scheme 2) and finally, a p(γc)which is close to the dimension of the full model
(Scheme 3). The p(γc) non-zero regression coefficients β j ’s and the intercept β0 in the
truemodel are chosen randomly from the set {−0.2, 0.4, . . . , (−1)p(γc)×0.2× p(γc)}.
The error variance σ 2 is chosen to be 1. After choosing the dimension p(γc), the
coefficients (β0,βγc

), σ 2 and the design matrix Xn , we generate en from N (0, σ 2 I ).
The vector of observations yn is obtained by adding μn = 1β0 + Xγcβγc

and en . We
repeat the data generation procedure 100 times and count the proportion of times each
method selects the true model.

There are two issues to be mentioned here. First, for calculation of the marginal
densities

(
mγ (yn)

)
for the mixtures of g priors, one needs to calculate the integral in

(7), which is not of closed form.We use numerical integration (available in R software)
to calculate this integral for all themixtures. Second, since p is large, calculation of the
marginal densities for all the 2p candidate models inM is quite infeasible. Therefore,
we use Gibbs sampling technique to run a Markov chain onM and select the highest
visitedmodel (discarding burn-in) as the one chosen by themodel selection procedure.

Measures of comparison We make our comparison on the basis of the proportion of
times the true model is visited (Prop) by a model selection procedure. Along with this
proportion, we also compute the average difference (Diff ) between the selected model
and the true model. By difference we mean the cardinality of symmetric difference
between the index set of covariates of the true model and that of the model selected
by the corresponding model selection procedure.

Results obtainedThe simulation results for schemes 1, 2 and3 are presented inTables 1,
2 and 3, respectively. The results obtained in Scheme 1 show how the methods of
model selection perform when the true model is sparse. As theoretically shown in
Sect. 3.2, most of the mixtures of g-priors fail to perform well when the true model
is sparse. On the other hand, BASAD and methods based on Bayesian credible region,
being designed for sparse situations, work reasonably well in this setup. The proposed
methods and piMOM also yield competitive performance in this case. For the cases
with (p + 1) = 30 and n = 100, 150, proposed II yields the best results for both the
measures Prop and Diff, which is closely followed by proposed I. For the case with
n = 50 and (p + 1) = 30, BCR.marg yields the best performance in terms of Prop.
The performance of BCR.marg is closely followed by proposed II and BCR.joint in
terms of Prop, and BCR is outperformed by proposed II in terms of Diff. BASAD and
piMOM also perform moderately in this case. For (p +1) = 50, the best performance
is by BASAD, which is closely followed by BCR and piMOM for n = 50 and 100.
While Prop is maximized by BASAD in each of these two cases, piMOM tends to
select a model which is closest to the true model on an average. For the case with
(n, p +1) = (150, 50), both BASAD and proposed II perform well compared to other
methods, and BCR and piMOM also yield comparable performance. While BASAD
maximizes Prop, proposed II maximizes Prop and minimizes Diff in this case.
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Table 1 Proportion of times the true model is selected (Prop) and average difference (Diff ) of the selected
models from the true model for ten different competing methods of model selection in Scheme 1

(n, p + 1) → (50, 30) (100, 30) (150, 30) (50, 50) (100, 50) (150, 50)

Methods ↓ Prop Diff Prop Diff Prop Diff Prop Diff Prop Diff Prop Diff

Zellner–Siow 0.00 9.03 0.00 9.95 0.00 5.54 0.00 18.31 0.00 15.00 0.00 13.37

Hyper g/n 0.00 9.28 0.00 7.14 0.00 5.75 0.00 18.26 0.00 15.49 0.00 14.11

Robust 0.00 9.03 0.00 7.19 0.00 6.00 0.00 18.87 0.00 15.16 0.00 14.15

Generalized-g 0.00 8.88 0.00 7.26 0.00 5.39 0.00 17.18 0.00 15.73 0.00 13.86

piMOM 0.01 2.25 0.07 1.34 0.33 0.81 0.00 1.92 0.06 1.16 0.24 0.83

BASAD 0.00 10.52 0.02 4.66 0.14 2.66 0.07 4.13 0.27 1.52 0.45 1.00

BCR.joint+BIC 0.20 2.67 0.46 1.00 0.53 0.63 0.00 38.52 0.25 2.05 0.30 1.43

BCR.marg+BIC 0.22 2.64 0.45 1.02 0.58 0.59 0.00 40.57 0.26 2.00 0.37 1.26

Proposed I 0.00 4.02 0.26 1.14 0.80 0.23 0.00 14.87 0.00 7.84 0.00 6.31

Proposed II 0.20 1.70 0.72 0.32 0.90 0.10 0.00 7.92 0.01 2.36 0.45 0.78

The bold values signify the best performance among all the methods in each case
Here the true model has five active regressors

Table 2 Prop and Diff for ten different competing methods of model selection in Scheme 2

(n, p + 1) → (50, 30) (100, 30) (150, 30) (50, 50) (100, 50) (150, 50)

Methods ↓ Prop Diff Prop Diff Prop Diff Prop Diff Prop Diff Prop Diff

Zellner–Siow 0.03 2.76 0.31 0.92 0.50 0.64 0.00 4.85 0.00 3.82 0.00 2.25

Hyper g/n 0.03 2.74 0.39 0.76 0.45 0.69 0.00 5.06 0.00 3.75 0.02 2.15

Robust 0.01 2.85 0.36 0.82 0.55 0.57 0.00 4.64 0.00 3.68 0.00 2.18

Generalized-g 0.01 2.71 0.18 1.17 0.46 0.71 0.00 3.76 0.04 2.71 0.43 1.79

piMOM 0.01 2.37 0.05 1.31 0.30 0.81 0.00 4.77 0.00 2.57 0.19 0.93

BASAD 0.00 9.20 0.23 2.55 0.62 1.04 0.00 10.60 0.00 5.26 0.00 3.92

BCR.joint+BIC 0.12 2.77 0.55 0.73 0.56 0.56 0.00 24.65 0.17 2.47 0.32 1.30

BCR.marg+BIC 0.13 3.07 0.57 0.71 0.58 0.56 0.00 25.67 0.20 2.55 0.34 1.31

Proposed I 0.07 2.17 0.70 0.37 0.82 0.20 0.00 3.51 0.05 1.69 0.79 0.23

Proposed II 0.34 1.29 0.76 0.29 0.89 0.11 0.01 2.65 0.53 1.39 0.83 0.20

The bold values signify the best performance among all the methods in each case
Here, the true model has [(p − 1)/2] active regressors

In Scheme 2, where half of the covariates are active, all the methods yield compet-
itive performance. For all choices of p and n, the best performance is by proposed II
with respect to both the measures. For the choice (n, p + 1) = (50, 30), performance
of proposed II is followed by the methods based on credible region, and for the other
two cases with (p + 1) = 30, it is followed by proposed I. For (p + 1) = 50, apart
from proposed II, performance of BCR, proposed I and generalized-g are better than
other methods. Being designed for sparse cases only, BASAD fails to perform well in
this scenario.
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Table 3 Prop and Diff for ten different competing methods of model selection in Scheme 3

(n, p + 1) → (50, 30) (100, 30) (150, 30) (50, 50) (100, 50) (150, 50)

Methods ↓ Prop Diff Prop Diff Prop Diff Prop Diff Prop Diff Prop Diff

Zellner–Siow 0.18 1.62 0.71 0.29 0.94 0.06 0.00 20.94 0.12 1.20 0.48 0.55

Hyper g/n 0.19 1.58 0.71 0.29 0.94 0.06 0.00 22.10 0.12 1.19 0.52 0.51

Robust 0.18 1.61 0.71 0.29 0.95 0.05 0.00 21.64 0.11 1.22 0.51 0.51

Generalized-g 0.17 1.69 0.77 0.23 0.95 0.05 0.00 21.74 0.48 0.63 0.63 0.50

piMOM 0.00 3.37 0.01 1.60 0.17 1.18 0.00 11.8 0.01 1.76 0.09 1.12

BASAD 0.00 4.73 0.00 4.98 0.23 2.86 0.00 34.38 0.00 16.84 0.00 11.14

BCR.joint+BIC 0.12 2.13 0.34 0.91 0.40 0.67 0.00 10.33 0.18 1.62 0.23 1.20

BCR.marg+BIC 0.11 2.22 0.34 0.91 0.41 0.65 0.00 10.14 0.18 1.60 0.22 1.18

Proposed I 0.20 1.55 0.79 0.21 0.95 0.05 0.00 11.74 0.50 0.60 0.85 0.17

Proposed II 0.25 1.34 0.77 0.23 0.93 0.07 0.00 9.16 0.54 0.57 0.85 0.16

The bold values signify the best performance among all the methods in each case
Here, the true model has 25 active regressors when p = 30 and 40 active regressors when p = 50

In Scheme 3, 25 covariates are chosen to be active when (p + 1) = 30, while 40
covariates are active when (p + 1) = 50. Performance of the mixtures of g priors are
better in general than other methods in this case. As expected BASAD fails to perform
well in this scenario. Among the mixtures, results for proposed I and proposed II are
better than others. Finally, unlike the mixtures, piMOM does not show any significant
improvement in this case. The methods based on credible region also yield moderate
performance in this scenario.

General remarks From results of these three schemes, it is evident that the methods
based on the proposed mixture are more robust than the other methods, in the sense
that irrespective of the dimension of the true model, they select the same with higher
probability. The other mixtures of g-priors perform well only when the dimension of
the true model is not too small. On the other hand, BASAD requires the true model to
be sparse enough to perform well. Again, piMOM performs well when the regression
coefficients (βi s) are significant enough. As it appears from the simulation results,
piMOM mostly misses out the covariates with regression coefficients −0.2 and 0.4.
Finally, the methods based on credible region yield a moderate performance in almost
all the cases, although they show a little improvement as n grows from 50 to 150 in
each case. As our purpose is to propose a method which works well in cases where no
prior information is available on the dimension of the true model, it is evident from
our numerical results that the method based on the proposed priors fulfill our goal
satisfactorily.

Median probability model The proportion of visits to the true model may not always
be a good measure to look at when there are large number of competing models
(see García-Donato and Martínez-Beneito 2013). In that case, one may also look at
the inclusion probabilities of the regressors and obtain the median probability model
rather than the highest visited model. To demonstrate the performance of the proposed
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method further, we find the median probability model for each of the methods except
BCR.joint and BCR.marg. The last two methods do not rely on sequential visits of
Markov chains in the model space, and, therefore, it is not possible to calculate the
inclusion probabilities. For each of the other methods, we also calculate the average
difference between the true model and the median probability model. Tables 4, 5 and
6 in the supplementary file show the performance of different methods with respect
to closeness of the median probability model to the true model. From the tables it
can be seen that the performance of the proposed method is uniformly better than all
other methods when the true model is of small dimension (Table 4), as well as when
it is of large dimension (Table 6). For the case where the true model is of moderate
dimension (Table 5) it is comparable with other methods and often yields the best
performance.

8 Concluding remarks

In this paper, we propose a class of mixtures of g-priors suitable for situations where p
grows with n. The resulting marginal density has an approximation with a closed form
expression which makes its implementation simple. We investigate the performance
of the proposed prior by deriving consistency properties under different settings. We
also compare its performance with that of several other model selection procedures
using numerical results under different simulation schemes, which demonstrates its
nobility. Theoretically as well as in simulations, superiority of the proposed mixture
over other mixtures has been shown under sparse situations.

The prior for βγ arising from this mixture has a very thick tail which is rec-
ommended by Jeffreys (1961). Further, the set of priors (5) has the properties like
predictive matching and group invariance as described in Bayarri et al. (2012) (see
Results 2–4 of Bayarri et al. 2012 in this context). The authors have explicitly justified
the adoption of the form (5) in a broader context.

Choice of the hyperparameters The hyperparameter, τ = nr , 1 ≤ r < 2, acts as a
scale parameter of the proposed prior. Theoretical results suggest taking higher values
of r to achieve a better rate of consistency. Also, bigger values of r result in better rates
of approximation of the marginal density to a closed form expression. But very large
values of r would make the prior too vague and may result in singularity problem.
Thus we keep r as small as possible and recommend using r = 1. A slightly bigger
value of r may also be considered. Note that the results with r = 1 are reasonably
good in all the simulation schemes.

Finally, it may be mentioned that we have studied the performance of the proposed
mixture for ν = 1 and ν = p. The performance of themixturewith ν = p is better than
the other in the light of all the properties considered in this paper except information
consistency. The prior with ν = p fails to be information consistent when n ≤ 2p. In
practice, when n > 2p one can conveniently use the proposed prior with ν = p.

Acknowledgements We are thankful to the reviewers for their very useful comments and suggestions that
helped us improve the paper.
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Appendix

In this section, we present the proofs of all the theorems stated in this paper. Many of
the statements in the following proofs hold with probability tending to 1 as n → ∞,
although this will not be always mentioned. Throughout this section we will assume
that Var(en) = σ 2 I , where σ 2 > 0 is unknown.

Auxiliary results

We first state some lemmas which will help in proving our main results. The proofs
of these lemmas are given in the supplementary file.

Lemma 1 If yn = μn + en with μn satisfying assumption (A1) and en satisfying
assumption (A2), then the following results hold as n → ∞:

(i) ē = ∑n
i=1 ei/n

p−→ 0,

(ii)
∑n

i=1 μi ei/n
p−→ 0,

(iii) S2
e

p−→ σ 2 where nS2
e = ∑n

i=1 (ei − ē)2,
(iv) maxγ∈M e′

n Pn(γ )en/n = Op (p/n), where Pn(γ ) is the projection matrix
onto the span of [1,Xγ ].

(v) maxγ∈M |μn
′(I − Pn(γ ))en|/n = Op(

√
p/n) and

(vi) e′
n(I − Pn(γ ))en/n

p−→ σ 2 uniformly in γ ∈ M.
(vii)

∑
(yi − ȳ)2 /n = Op(1).

Lemma 2 Let R2
γ be such that (1− R2

γ ) = y′
n(I − Pn(γ ))yn/(nS2

y ). Under assump-

tions (A1) and (A2), there exists δ0 > 0 such that (1 − R2
γ ) > δ0 with probability

tending to 1 uniformly in γ ∈ M.

Lemma 3 For any γ ∈ M and λ > 0, we have

(a)

∫ ∞

0
e−ww(p(γ )+λ)/2−1

(
1 + 2w

n2rλ

)(n−p(γ )−1)/2

dw

≤ Γ

(
p(γ ) + λ

2

) ∞∑

j=0

(
p + λ

2n2r + λ

) j

,

(b)

∫ ∞

0
e−ww(p(γ )+λ)/2−1

(
1 − 2w

δ0n2rλ

)(n−p(γ )−1)/2

dw

≥ Γ

(
p(γ ) + λ

2

)
⎧
⎨

⎩
1 −

∞∑

j=0

(
p + λ

2δ0n2r + λ

) j
⎫
⎬

⎭
for any δ0 > 0.
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Lemma 4 Under the setup of Theorem 4, for any fixed R > 0, with probability tending
to one

max
γ∈M1

e′
n(Pn(γ ) − Pn(γc))en

σ 2(p(γ ) − p(γc))
≤ R log p.

Lemma 5 Under the assumptions of Theorem 2 the following results hold:

(a) For some δ1 > 0, with probability tending to one,

max
γ∈M2

(
1 − R2

γc

1 − R2
γ

)

≤
(
1 + δ1

ns

)−1

.

(b) For any R > 2 and any 0 < ε < 1, with probability tending to one uniformly in
γ ∈ M1, we have

1 − R2
γc

1 − R2
γ

≤ pR(p(γ )−p(γc))/(n(1−ε)2).

(c) For any R > 2 and any 0 < ε < 1, with probability tending to one uniformly in
γ ∈ M, we get

n R2
γ

1 − R2
γ

≤ Rp(γ ) log p

1 − ε
.

Proof of Theorem 1

Using (6) and (7), we write

mγ (yn) = C1,y,nI, (13)

where

C1,y,n = Γ (n − 1)/2

Γ (ν/2)π(n−1)/2
√

n

(
τ 2ν

2

)ν/2 (
S2

y

)−(n−1)/2
,

and I = ∫∞
0 e−τ 2ν/(2g)g−(1+ν/2)(1 + g)(n−p(γ )−1)/2{1 + (1 − R2

γ )g}−(n−1)/2dg.

We first evaluate I. After making a transformation w = τ 2ν/(2g), we observe that

I = C2,y,n

∫ ∞

0
e−wwν/2−1

(
1 + τ 2ν

2w

)(n−p(γ )−1)/2{
1 + (1 − R2

γ )
τ 2ν

2w

}−(n−1)/2

dw,

(14)
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where C2,y,n = (τ 2ν/2)−ν/2. Next we use the fact that for any w > 0

{
1 + (1 − R2

γ )τ 2ν/(2w)
}−(n−1)/2

<
{
(1 − R2

γ )τ 2ν/(2w)
}−(n−1)/2

.

Useof this inequality alongwithmultiplication anddivisionby (τ 2ν/(2w))(n−p(γ )−1)/2

in right-hand side of (14) gives

I ≤ C3,y,n

∫ ∞

0
e−ww(p(γ )+ν)/2−1

(
1 + 2w

τ 2ν

)(n−p(γ )−1)/2

dw,

where C3,y,n = C2,y,n(τ 2ν/2)−p(γ )/2(1 − R2
γ )−(n−1)/2. It follows from part (a) of

Lemma 3 and by putting τ = nr that

I ≤ C3,y,nΓ

(
p(γ ) + ν

2

) ∞∑

j=0

(
p + ν

2n2r + ν

) j

.

From the above inequality it follows that

I ≤ C3,y,nΓ

(
p(γ ) + ν

2

)(
1 + p

νn2r−1 O(1)
)

. (15)

Next, we assign a bound on I from other direction and show that the difference
between the two bounds is small. For this, we move back to (14) and use the inequality
(1+(τ 2ν)/(2w)) > (τ 2ν)/(2w) alongwith amultiplication and division by the factor
((1 − R2

γ )(τ 2ν)/(2w))(n−1)/2 in the integrand of (14). It then follows that

I ≥ C3,y,n

∫ ∞

0
w(ν+p(γ ))/2−1e−w

(

1 − 1

1 + (1 − R2
γ )τ 2ν/(2w)

)(n−1)/2

dw

≥ C3,y,n

∫ ∞

0
w(ν+p(γ ))/2−1e−w

(

1 − 2w

(1 − R2
γ )τ 2ν

)(n−1)/2

dw,

where C3,y,n is the same as in (15). From Lemma 2, we know that for all γ ∈ M,
(1 − R2

γ ) has a fixed positive lower bound δ0 with probability tending to 1. This,
together with part (b) of Lemma 3 and the fact that τ = nr gives

I ≥ C3,y,nΓ

(
p(γ ) + ν

2

)
⎧
⎨

⎩
1 −

∞∑

j=0

(
p + ν

2δ0n2r + ν

) j
⎫
⎬

⎭
,

for some δ0 > 0 with probability tending to 1. We then have

I ≥ C3,y,nΓ

(
p(γ ) + ν

2

)(
1 + p

νn2r−1 Op(1)
)

. (16)
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The theorem now follows from (13), (15) and (16). ��

Proof of Theorem 2

We need to show that ∑

γ∈Mi

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)

p−→ 0, (17)

as n → ∞ for i = 1, 2. We prove for the cases Mγc 
= MN and Mγc = MN and also
prove (17) for i = 1 and i = 2, separately. Considering the fact that when Mγc = MN ,
then M = M1 ∪ {γc}, we split the proof into three parts.
Case I Mγc 
= MN and γ ∈ M2. From Theorem 1, we have

mγ (yn)

mγc (yn)
≤
(

n2rν

2

)−(p(γ )−p(γc))/2
(
1 − R2

γc

1 − R2
γ

)(n−1)/2

Γ {(ν + p(γ ))/2}
Γ {(ν + p(γc))/2}

{
1 + pO(1)/(νn2r−1)

}

{
1 + pOp(1)/(νn2r−1)

} , (18)

where the terms O(1) and Op(1) are free of γ . To evaluate the third term of right-hand
side of the above expression, we make use of the result

{x/(x + s)}s ≤ Γ (x + s)/
(
xsΓ x

) ≤ 1

for 0 < s < 1 and x > 0 from Wendel (1948). It can be shown that

Γ {(ν + p(γ ))/2}
Γ {(ν + p(γc))/2} ≤

(
ν + p

2

)|p(γ )−p(γc)|/2
. (19)

Hence from inequalities (18) and (19), and part (a) of Lemma 5 we have

max
γ∈M2

mγ (yn)

mγc (yn)
≤
(

n2rν

2

)p/2 (
1 + δ1

ns

)−(n−1)/2

×
(

ν + p

2

)p/2 {
1 + pO(1)/(νn2r−1)

}

{
1 + pOp(1)/(νn2r−1)

} .

Using assumption (A4), we also get an upper bound of the ratio of prior probabilities
of the models. Therefore, we get

∑

γ∈M2

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)
≤ cp 2p+1

(
n2rν

2

)p/2

×
(
1 + δ1

ns

)−(n−1)/2 (
ν + p

2

)p/2

, (20)
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with probability tending to one. It is now easy to check that the above quantity goes
to 0 as n → ∞ when s < (1 − b)/2.

Case II Mγc 
= MN and γ ∈ M1. Consider each term of the right-hand side of the
inequality in (18). From part (b) of Lemma 5, for any R > 2 and any 0 < ε < 1, with
probability tending to one uniformly in γ ∈ M1,

1 − R2
γc

1 − R2
γ

≤ pR(p(γ )−p(γc))/(n(1−ε)2). (21)

Combining (18), (19), (21) and using assumption (A4), we have

∑

γ∈M1

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)
≤

∑

γ∈M1

(
c2 (ν + p)pR/(1−ε)2

n2rν

)(p(γ )−p(γc))/2

≤
p−p(γc)∑

q=1

(
p − p(γc)

q

)(
c

√
ν + p pR/{2(1−ε)2}

nr
√

ν

)q

≤
⎧
⎨

⎩

(

1 + c
√

ν + p pR/{2(1−ε)2}

nr
√

ν

)(p−p(γc))

− 1

⎫
⎬

⎭
.(22)

If the first term within the curly brackets converges to 1, then the above expres-
sion converges to 0 as n → ∞. If ν = 1 and p = O(nb), then the first term,
for some positive constants c′ and k, any R > 2 and any ε > 0, is less than
(1 + c′ n−[r−(R+1)b/{2(1−ε)2}])knb

. Also, when ν = p we have this term to be less
than (1 + c′′ n−[r−Rb/{2(1−ε)2}])knb

for some positive constants c′′ and k, any R > 2
and any ε > 0. Letting R ↓ 2 and ε ↓ 0, the last expression in (22) converges to 0 if
b < 2r/5 when ν = 1 and if b < r/2 when ν = p.

Case III Mγc = MN . When the null model is true, the Bayes factor of any model with
respect to the null model is given by

mγ (yn)

m N (yn)
=
∫ ∞

0
(1 + g)(n−p(γ )−1)/2

{
1 + g(1 − R2

γ )
}−(n−1)/2

π(g)dg, (23)

where π(g) is as in (6). Now, we have

[
1 + g

1 + (1 − R2
γ )g

](n−1)/2

= exp

[(
n − 1

2

){
ln(1 + g) − ln(1 + (1 − R2

γ )g)
}]

= exp

[(
n − 1

2

){

ln(1 + g) − ln(1 + g) + R2
γ g

1 + g∗

}]

,
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where g∗ ∈ [(1 − R2
γ )g, g]. The above quantity is less than

exp

[(
n − 1

2

){
R2

γ

(1 − R2
γ ) + 1/g

}]

≤ exp

[(
n − 1

2

)(
R2

γ

1 − R2
γ

)]

.

Then by part (c) of Lemma 5, for any R > 2 and any 0 < ε < 1,

[
1 + g

1 + (1 − R2
γ )g

](n−1)/2

≤ pRp(γ )/(2(1−ε))

with probability tending to one uniformly in γ ∈ M. From (23), we also have

mγ (yn)

m N (yn)
≤ pRp(γ )/(2(1−ε))

∫ ∞

0
(1 + g)−p(γ )/2π(g)dg. (24)

Now, with π(g) as given in (6)

I =
∫ ∞

0
(1 + g)−p(γ )/2π(g)dg ≤

(
τ 2ν/2

)ν/2

Γ (ν/2)

∫ ∞

0
e−τ 2ν/(2g)g−(p(γ )+ν)/2−1dg

by the fact that (1 + g)−1 < g−1. We then have

I =
{(

τ 2/2
)−p(γ )/2

Γ {(p(γ ) + 1)/2}/Γ (1/2) for ν = 1,
(
τ 2 p/2

)−p(γ )/2
Γ {(p(γ ) + p)/2}/Γ (p/2) for ν = p.

To evaluate these terms, we again use the results of Wendel (1948) stated before in
Case I. Little algebra shows

I <

{(
τ 2/2

)−p(γ )/2
(p/2)p(γ )/2 for ν = 1,

(
τ 2 p/2

)−p(γ )/2
p p(γ )/2 for ν = p.

By assumption (A4) and putting τ = nr , it follows from (24) that

∑

γ∈M\{γc}

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)
<

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

γ∈M\{γc}

(
c2 p1+R/(1−ε)/n2r

)p(γ )/2
/
√

π for ν = 1,

∑

γ∈M\{γc}

(
2c2 pR/(1−ε)/n2r

)p(γ )/2
for ν = p.

=
⎧
⎨

⎩

(
1 + c p{1+R/(1−ε)}/2/nr

)p − 1 for ν = 1,
(
1 + √

2 c pR/{2(1−ε)}/nr
)p − 1 for ν = p,

(25)

for any R > 2 and any ε > 0.
As before, we let R ↓ 2 and ε ↓ 0 and observe that the above quantity converges

to 0 when p is of order nb if b < 2r/5 for ν = 1 and b < r/2 for ν = p. ��

123



400 M. Mukhopadhyay, T. Samanta

Proof of Theorem 3

Let Mγc = MN . By assumption (A4), P(Mγ )/P(Mγc ) ≥ c−p(γ ) for all γ and,
therefore, from (23) we have

∑

γ∈M\{γc}

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)
≥
∑

γ

∫ ∞

0
c−p(γ )(1 + g)−p(γ )/2π(g)dg, (26)

where π(g) is given by (9). Putting the prior we get the R.H.S. of (26) as

∑

γ∈M\{γc}
c−p(γ ) Γ (λ0 + λ1)Γ (λ1 + p(γ )/2)

Γ λ1Γ (λ0 + λ1 + p(γ )/2)
.

Using the inequality of Wendel (1948) stated before in the proof of Theorem 2 and
the fact that λ1 > ε for some ε > 0 free of n, it can be shown that for some constant
C ′ > 0, the above expression is bigger than

C ′ ∑

γ∈M\{γc}

(
c−2λ1

λ0 + λ1

)p(γ )/2

= C ′
⎧
⎨

⎩

(

1 + c−1

√
λ1

λ0 + λ1

)p

− 1

⎫
⎬

⎭
.

Thus if p = nb, the R.H.S. of (26) does not go to 0 if λ0/λ1 = O(n2b). ��

Proof of Theorem 4

Under the setup of Theorem 4, we do not consider all the 2p models. We denote
the reduced classes of models corresponding to M, M1, M2 by M∗, M∗

1, M∗
2,

respectively. We proceed as in the proof of Theorem 2, and prove (17) with Mi

replaced by M∗
i , for i = 1, 2. We consider separately the cases when the true model

is null and when it is non-null.

Case I Mγc 
= MN . First, we consider the case when i = 2. It can easily be seen that
the part concerning the model space M2 in Theorem 2 (i.e., Case I of the theorem)
is proved without using the assumption of normality. Since M∗

2 is a proper subset of
M2, the same proof works here.

Next consider (17) with Mi replaced by M∗
i and i = 1. Here we use Lemma 4

which will imply that part (b) of Lemma 5 holds for the model space M∗ satisfying
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(A6) a well. From (18), (19) and (21) we have, for any R > 0 and any ε > 0,

∑

γ∈M∗
1

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)
≤

∑

γ∈M∗
1

(
c2 (ν + p)pR/(1−ε)2

n2rν

)(p(γ )−p(γc))/2

≤ m
p−p(γc)∑

q=1

(
c

√
ν + p pR/{2(1−ε)2}

nr
√

ν

)q

≤ m c
√

ν + p pR/{2(1−ε)2}

nr
√

ν
(
1 − c

√
ν + p pR/{2(1−ε)2}/(nr

√
ν)
) ,

where m is as in condition (A6). For suitably chosen R and ε, it can be easily seen
that the last expression converges to 0 for any 0 < b < 1.

Case II Mγc = MN . We proceed as in Theorem 2. Observe that using Lemma 4, we
obtain an inequality similar to (25) withM replaced by M∗. Thus, we get

∑

γ∈(M∗\{γc})

P(Mγ )

P(Mγc )

mγ (yn)

mγc (yn)
<

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

γ∈(M∗\{γc})
π−1/2

(
c2 p1+R/(1−ε)/n2r

)p(γ )/2
for ν = 1,

∑

γ∈(M∗\{γc})

(
2 c2 pR/(1−ε)/n2r

)p(γ )/2
for ν = p.

<

⎧
⎨

⎩

m
{

c p1/2+R/{2(1−ε)}/
(

nr − c p1/2+R/{2(1−ε)})} for ν = 1,

m
{√

2 c pR/{2(1−ε)}/
(

nr − √
2 c pR/{2(1−ε)})} for ν = p.

Here m is as in Condition (A6). One can choose R > 0 and ε > 0 suitably and show
that the above quantities go to 0 for any 0 < b < 1. ��

Proof of Theorem 5

Our model selection rule is to choose a model γ̂ in the model space M, which max-
imizes P(Mγ )mγ (yn) with respect to γ . Now, from Theorem 1, this is equivalent to
maximizing

P(Mγ )Γ

(
ν + p(γ )

2

)
{nS2

y (1 − R2
γ )}−(n−1)/2

(
n2rν

2

)−p(γ )/2

(1 + εn(γ )),

where |εn(γ )| = pOp(1)/(n2r−1ν) uniformly in γ . We omit the other terms involved
in the approximation given in Theorem 1, as those are free of γ . Maximizing the above
is equivalent to minimizing

[
P(Mγ )Γ

(
ν + p(γ )

2

)
(1 + εn(γ ))

]−2/(n−1) (n2rν

2

)p(γ )/(n−1)

nS2
y (1 − R2

γ )

(27)
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with respect to γ . From (11), we have nS2
y (1 − R2

γ ) = Cn + 2σ 2Dn(γ )(1 + ξn(γ )),
where Cn = e′

nen and ξn(γ ) = {2μn
′(I − Pn(γ ))en − e′

n Pn(γ )en}/(2σ 2Dn(γ )). If
Mγ̂ is the model for which (27) is minimized, then we get

Dn(γ̂ )

Dn(γ )
≤ Cn(bn(γ ) − 1)

2σ 2Dn(γ )(1 + ξn(γ̂ ))
+ bn(γ )(1 + ξn(γ ))

(1 + ξn(γ̂ ))
,

where

bn(γ ) =
{(

P(Mγ̂ )

P(Mγ )

)2 (
Γ {(n + p(γ̂ ))/2}
Γ {(n + p(γ ))/2}

)2 (n2ν

2

)(p(γ̂−p(γ )) (
1 + εn(γ̂ )

1 + εn(γ )

)2
}1/(n−1)

.

(28)

Therefore, if ξn = maxγ |ξn(γ )|, we have

1 ≤ Dn(γ̂ )

minγ Dn(γ )
≤ Cn

2nσ 2(1 − ξn)
× max

γ

n(bn(γ ) − 1)

Dn(γ )
+ (1 + ξn)

(1 − ξn)
× max

γ
bn(γ ).

(29)
The rest of the proof will follow from the facts stated below:

Cn/n
p−→ σ 2, (30)

ξn
p−→ 0, (31)

max
γ

n(bn(γ ) − 1)

Dn(γ )

p−→ 0, (32)

and max
γ

bn(γ )
p−→ 1. (33)

The proof of (30) is straightforward. To prove (31), we first note that

ξn ≤ 2maxγ μn
′(I − Pn(γ ))en/n − minγ e′

n Pn(γ )en/n

2minγ σ 2Dn(γ )/n
≤ Op(

√
p/n)

δ/ns
.

This follows from parts (iv), (v) of Lemma 1, and assumption (A3*). Clearly if s <

(1 − b)/2, (31) holds.

Next, we prove (33). We show that log(maxγ bn(γ )) = maxγ log(bn(γ ))
p−→ 0.

From (28) and (19) and by assumption (A4), we have

max
γ

log bn(γ ) ≤ 2

n − 1

{
log

(
max

γ

P(Mγ̂ )

P(Mγ )

)
+ log

(
max

γ

Γ {(n + p(γ̂ ))/2}
Γ {(n + p(γ ))/2}

)

+ log

(
1 + εn(γ̂ )

1 − maxγ |εn(γ )|
)}

+ max
γ

p(γ̂ ) − p(γ )

n − 1
log

(
n2rν

2

)
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≤ 2

n − 1

{
p log c + p

2
log

(
p + ν

2

)

+ log

(
1 + pOp(1)/(n2r−1ν)

1 − pOp(1)/(n2r−1ν)

)
+ p

2
log

(
n2rν

2

)}
.

We note that log(maxγ bnγ ) ≤ maxγ log bnγ . It is now easy to show that when p =
O(nb) with 0 < b < 1, the above expression is Op

(
n−(1−b) log n

)
and converges to

0 with probability tending to 1. Hence, (33) holds.
Finally, we prove (32). By mean value theorem, for some z > 0, (ez −1) = zez∗

<

zez , where z∗ ∈ (0, z). Replacing z by log bn(γ ), we get

max
γ

(bn(γ ) − 1) ≤ max
γ

log bn(γ ) exp{max
γ

log bn(γ )}.

By assumption (A3*), we have

max
γ

n(bn(γ ) − 1)

Dn(γ )
≤ maxγ (bn(γ ) − 1)

minγ Dn(γ )/n

≤ ns Op

(
n−(1−b) log n

)
exp

{
Op

(
n−(1−b) log n

)}
,

which goes to 0 with probability tending to 1, as n → ∞. ��
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