RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

Metrically Regular Vector Field and Iterative Processes for Generalized Equations in Hadamard Manifolds

No image available for this title
This paper is focused on the problem of finding a singularity of the sum of two vector fields defined on a Hadamard manifold, or more precisely, the study of a generalized equation in a Riemannian setting. We extend the concept of metric regularity to the Riemannian setting and investigate its relationship with the generalized equation in this new context. In particular, a version of Graves’s theorem is presented and we also define some concepts related to metric regularity, including the Aubin property and the strong metric regularity of set-valued vector fields. A conceptual method for finding a singularity of the sum of two vector fields is also considered. This method has as particular instances: the proximal point method, Newton’s method, and Zincenko’s method on Hadamard manifolds. Under the assumption of metric regularity at the singularity, we establish that the methods are well defined in a suitable
neighborhood of the singularity. Moreover, we also show that each sequence generated by these methods converges to this singularity at a superlinear rate.

Availability
EB00000003651KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment