RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

A hybrid evolutionary algorithm with adaptive multi-population strategy for multi-objective optimization problems

No image available for this title
In this paper, a new multi-objective evolutionary algorithm (MOEA) named hybrid MOEA with adaptive multi-population strategy (HMOEA-AMP) is proposed for multi-objective optimization problems (MOPs).In the framework of HMOEA-AMP, the particle swarm optimization and differential evolution are hybridized to guide the exploitation of the Pareto optimal solutions and the exploration of
the optimal distribution of the achieved solutions, respectively. Multiple subpopulations are constructed in an adaptive fashion according to a number of scalar subproblems, which are decomposed from a MOP through a set of predefined weight vectors. Comprehensive experiments using a set of benchmark are conducted to investigate the performance of HMOEA-AMP in comparison with several state-of-the-art MOEAs. The experimental results show the advantage of the proposed algorithm

No copy data
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

-

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment