RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

Complex Outliers of Hermitian Random Matrices

No image available for this title
In this paper, we study the asymptotic behavior of the outliers of the sum a Hermitian random matrix and a finite rank matrix which is not necessarily Hermitian. We observe several possible convergence rates and outliers locating around their limits at the vertices of regular polygons as in Benaych-Georges and Rochet (Probab Theory Relat Fields, 2015), as well as possible correlations between outliers at macroscopic distance as in Knowles and Yin (Ann Probab 42(5):1980–2031, 2014) and BenaychGeorges and Rochet (2015). We also observe that a single spike can generate several outliers in the spectrum of the deformed model, as already noticed in Benaych-Georges and Nadakuditi (Adv Math 227(1):494–521, 2011) and Belinschi et al. (Outliers in the spectrum of large deformed unitarily invariant models 2012, arXiv:1207.5443v1). In the particular case where the perturbation matrix is Hermitian, our results complete the work of Benaych-Georges et al. (Electron J Probab 16(60):1621–1662, 2011), as we consider fluctuations of outliers lying in “holes” of the limit support, which happen to exhibit surprising correlations.

Availability
EB00000003324KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment