RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces

No image available for this title
We apply the topological degree theory for condensing maps to study approximation of solutions to a fractional-order semilinear differential equation in a Banach space. We assume that the linear part of the equation is a closed unbounded generator of a C 0 -semigroup. We also suppose that the nonlinearity satisfies a regularity condition expressed in terms of the Hausdorff measure of noncompactness. We justify the scheme of semidiscretization of the Cauchy problem for a differential equation of a given type and evaluate the topological index of the solution set. This makes it possible to obtain a result on the approximation of solutions to the problem.

Availability
EB00000003705KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment