RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

Extension Problems Related to the Higher Order Fractional Laplacian

No image available for this title
Caffarelli and Silvestre [Comm. Part. Diff. Eqs., 32, 1245–1260 (2007)] characterized the fractional Laplacian (−Δ) s as an operator maps Dirichlet boundary condition to Neumann condition via the harmonic extension problem to the upper half space for 0 < s < 1. In this paper, we extend this result to all s > 0. We also give a new proof to the dissipative a priori estimate of quasi-geostrophic equations in the framework of L p norm using the Caffarelli–Silvestre’s extension technique.Keywords Fractional Laplacian, quasi-geostrophic equations, energy equality

Availability
EB00000003407KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment