RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

Two-State Model of a General Heun Class with Periodic Level-Crossings

No image available for this title
A specific constant-amplitude periodic level-crossing model of the semi-classical quantum time-dependent two-state problem that belongs to a general Heun class of field configurations is presented. The exact analytic solution for the probability amplitude, generally written for this class in terms of the general Heun functions, in this specific case admits series expansion in terms of the incomplete Beta functions. Terminating this series results in an infinite hierarchy of finite-sum closed-form solutions each standing for a particular two-state model, which generally is only conditionally integrable in the sense that for these field configurations the amplitude and phase modulation functions are not varied independently. However, there exists at least one exception when the model is unconditionally integrable, that is the Rabi frequency and the detuning of the driving optical field are controlled independently. This is a constant-amplitude periodic level-crossing model, for which the detuning in a limit becomes a Dirac delta-comb configuration with variable frequency of the level-crossings. The exact solution for this model is derived, the Floquet exponents are determined and study of the population dynamics in the system for various regions of the input parameters is done.

Availability
EB00000003291KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment