RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

Noetherian varieties in definably complete structures

No image available for this title
We prove that the zero-set of a C ∞ function belonging to a noetherian differential ring M can be written as a finite union of C ∞ manifolds which are definable by functions from the same ring. These manifolds can be taken to be connected under the additional assumption that every zero-dimensional regular zero-set of functions in M consists of finitely many points. These results hold not only for C ∞ functions over the reals, but more generally for definable C ∞ functions in a definably complete expansion of an ordered field. The class of definably complete expansions of ordered fields, whose basic properties are discussed in this paper, expands the class of real closed fields and includes o-minimal expansions of ordered fields. Finally, we provide examples of noetherian differential rings of C ∞ functions over the reals, containing non-analytic functions.

Availability
EB00000003649KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment