RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

On the Characterization of Triebel–Lizorkin Type Spaces of Analytic Functions

No image available for this title
We consider different characterizations of Triebel–Lizorkin type spaces of analytic functions on the unit disc. Even though our results appear in the folklore,
detailed descriptions are hard to find, and in fact we are unable to discuss the full range of parameters. Without additional effort we work with vector-valued analytic functions, and also consider a generalized scale of function spaces, including for example so-called Q-spaces. The primary aim of this note is to generalize, and clarify, a remarkable result by Cohn and Verbitsky, on factorization of Triebel–Lizorkin spaces.Their result remains valid for functions taking values in an arbitrary Banach space, provided that the vector-valuedness “sits in the right factor”. On the other hand, if we impose vector-valuedness on the “wrong” factor, then the factorization theorem fails even for functions taking values in a separable Hilbert space.

Availability
EB00000003574KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment