RECORD DETAIL


Back To Previous

UPA Perpustakaan Universitas Jember

Bifurcations of Multi-Vortex Configurations in Rotating Bose–Einstein Condensates

No image available for this title
We analyze global bifurcations along the family of radially symmetric vortices in the Gross–Pitaevskii equation with a symmetric harmonic potential
and a chemical potential μ under the steady rotation with frequency Ī©. The families are constructed in the small-amplitude limit when the chemical potential μ is close to an eigenvalue of the Schrƶdinger operator for a quantum harmonic oscillator. We show that for Ī© near 0, the Hessian operator at the radially symmetric vortex of charge m 0 ∈ N has m 0 (m 0 + 1)/2 pairs of negative eigenvalues. When the parameter Ī© is increased, 1 + m 0 (m 0 āˆ’ 1)/2 global bifurcations happen. Each bifurcation results in the disappearance of a pair of negative eigenvalues in the Hessian operator at the radially symmetric vortex. The distributions of vortices in the bifurcating families are analyzed by using symmetries of the GrossPitaevskii equation and the zeros of Hermite–Gauss eigenfunctions. The vortex configurations that can be found in the bifurcating families are the asymmetric vortex (m 0 = 1), the asymmetric vortex pair (m 0 = 2), and the vortex polygons (m 0 ≄ 2)

Availability
EB00000003657KAvailable
Detail Information

Series Title

-

Call Number

-

Publisher

: ,

Collation

-

Language

ISBN/ISSN

-

Classification

NONE

Detail Information

Content Type

E-Jurnal

Media Type

-

Carrier Type

-

Edition

-

Specific Detail Info

-

Statement of Responsibility

No other version available
File Attachment